Blog Posts

The Puzzle of Persistent Concussion Symptoms with Kelsey Bryk

Kelsey is a 5th year doctoral student in the Biomechanics & Movement Science program at the University of Delaware. She is originally from Winnipeg, Canada (Go Jets Go!) where she completed her Bachelor of Science with Honours in Biopsychology. She then moved on to earn her Masters of Science in Health & Exercise Science in Kelowna, BC, Canada. She became interested in the brain and neuroscience after watching a lot of Grey’s Anatomy in high school, but her interest in concussions came a few years later in undergrad while watching, naturally, ice hockey. Kelsey’s research in the concussion world has been pretty broad over the past few years, but she began to realize that most concussion research was on high school, college, or professional athletes and she couldn’t help but think “what about the everyday person?” This led her to what is now her dissertation project – investigating the neurological health of adults with persistent symptoms from a concussion. When she is not working on her dissertation, she loves to attend spinning classes, go for hikes, and loves planning her next trip to a new place!

Twitter: Click Here!

LinkedIn: Click Here!

Website: Click Here!


Article: Preliminary Evidence for Improvement in Symptoms, Cognitive, Vestibular, and Oculomotor Outcomes Following Targeted Intervention with Chronic mTBI Patients

The Importance of Limb Dominance for Motor Outcomes

Sean Cochran is a 2nd year Ph.D. student in the department of Kinesiology and Dance at NMSU with an emphasis in motor control and learning. His primary research interests are the effects of virtual reality training on motor and cognitive performance. He received his M.S. in Applied Neuromechanics as well as his B.S. in Sport Medicine from the University of North Carolina at Greensboro.


Twitter: Click Here!

Article: The effects of brain lateralization on motor control and adaptation

Preventing Energy Deficiency Matters!

Nicole is Kinesiology PhD candidate at Penn State studying the effects of energy deficiency on metabolism, reproduction, and bone health in exercising women. She is also the Coalition Coordinator for the Female and Male Athlete Triad Coalition, a non-profit organization promoting the health and well-being of athletes and active individuals. 


ResearchGate: Click Here!

LinkedIn: Click Here!

Twitter: Click Here!

Female and Male Athlete Triad Coalition: Click Here!

Female and Male Athlete Triad Coalition Twitter: Click Here!

Article: Evidence for a Causal Role of Low Energy Availability in the Induction of Menstrual Cycle Disturbances during Strenuous Exercise Training

Baseball Biomechanics with Kyle Wasserberger

Kyle Wasserberger is currently a PhD student at Auburn University in Auburn, Alabama. He is a graduate teaching assistant for the School of Kinesiology as well as a research assistant in the Sports Medicine and Movement Laboratory. His research interests include performance enhancement and  mechanisms of injury in athletes with an emphasis on baseball and softball players.

Twitter: Click Here!

ResearchGate: Click Here!

Article: Mechanical energy generation, absorption and transfer amongst segments during walking

Applied Sports Science: Research and Dissemination with Alex Ehlert

Alex Ehlert is a Ph.D. student in the Human Performance Lab at Old Dominion University. A former collegiate golfer, Alex has two primary research interests. First, on the effects of physical preparation on golf performance (e.g. strength and conditioning, nutrition, warm-ups). Second, the psychological aspects of gastrointestinal distress in endurance athletes. Within these research areas, Alex has a strong interest in “bridging the gap” between research and practice by conducting research that is relevant to the applied setting and through communication and collaboration with practitioners to help disseminate information to those who can benefit from it. 

Twitter: Click Here!

Instagram: Click Here!

Article: An Applied Research Model for the Sport Sciences

A Non-linear Model for Spine Mechanics

Maryam Moeini is a third year Ph.D. student at Old Dominion University. Her background in biomedical engineering has allowed her to design a prosthesis and has spearheaded her interest in the biomechanics and physiology of the musculoskeletal system, mainly the spine!

Linkedin: Click Here!

Article: The Tensegrity-Truss as a Model for Spine Mechanics: Biotensegrity

Sports-Related Concussion: Sex Differences (Part 1)

In previous posts on my sports-related concussion (SRC) series, I’ve discussed the following topics, feel free to take a look at these as a primer!

SRC Injury Incidence, Physiological Mechanisms, and Head Impact Biomechanics

SRC in the Adolescent Athlete

SRC and Lower Extremity Injury Risk

Today’s post (Part 1) is going to cover sex differences as it pertains to SRC injury risk and risk factors.  In these posts, I strive to present the latest literature and a bit of my thoughts. Let’s begin…

SRC Incidence

A hot topic in the world of SRCs is the role of sex in determining both injury incidence and recovery outcomes.  Recent literature suggests that the rates of SRC injuries are greater in females at the adolescent, collegiate, and professional levels.  While the greatest number of SRCs are typically sustained during men’s (American) football, female athletes have demonstrated a greater risk for SRC in several sex-comparable sports, including softball/baseball, basketball, soccer, lacrosse, and ice hockey.5,13  Recent epidemiological studies in collegiate athletes suggest that female basketball and soccer players were 53% and 83% more likely to sustain an SRC compared to males.13  In adolescent athletes in which both sexes participated, the overall SRC was 56% greater in females.6  As with other injuries (eg, ACL), we have been able to identify key differentiating factors between sexes that place female athletes at greater risk for injury.  So the question to answer now is…why are females at greater risk for SRC?  While there are a few hypotheses, we will first discuss SRC reporting behaviors in male and female athletes.

Reporting an SRC

We know with a reasonable amount of certainty that SRCs are generally underreported, as it’s believed that as many as 50% of all SRCs are not reported to proper medical personnel, particularly in younger athletes.7,12  This issue is especially notable in male athletes competing in high contact sports (eg, football, hockey, lacrosse).  Compared to their female counterparts, adolescent males are much less likely to report a suspected SRC due to cultural perceptions that the injury is a sign of weakness.11  Specific reasons may include: pressure from coaches and teammates, not believing the injury was serious, and a general unawareness of SRC symptoms.  It is very important to consider the psychosocial aspects of SRC because many (whether we like it or not) self-identify as an athlete first; taking away an athlete’s ability to compete due to a concussive injury can be a severe blow to one’s mental health.  A full discussion on the psychological aspects of reporting an SRC is for another day, but keep this mind when you are working with a wide variety of athletes. 

Along similar lines, female athletes are much more likely to report greater symptom severity after a concussive event compared to males.  Recent research suggests that female high school and collegiate athletes reported significantly more symptoms at 2, 7, and 14 days post-SRC than males,4 specifically on reported headache, difficulty concentrating, and irritability.1  Things get a little interesting with regards to actual symptoms.  Is it because females are more truthful in reporting?  Or do females sustain more severe symptoms?  Females are more likely to report an SRC, but are their injuries actually more severe than males?  For these questions, let’s examine sex differences as it pertains to 1) head-neck strength and 2) neurophysiological differences in the male and female brain.

Head-Neck Strength Differences

While males and females experience a similar number of head impacts during sport,8 females may be at greater risk for more severe SRC injuries (prolonged recovery) due to strength and stiffness deficits in the head-neck segment when compared to males.10  The neck musculature is like any other in our body in that eccentric muscular action allows us to attenuate high impact forces.  The neck is unique in that it is a multiplanar segment with the ability to decelerate head impact forces in all three planes.  Decreased head-neck stiffness (29%), head mass (15–43%), and neck girth (12–30%) are believed to play an influential role in females experiencing greater angular accelerations and displacements during known and unknown force applications.10  Investigations into soccer athletes have determined that females exhibit nearly 50% less neck flexor/extensor strength9 and experience greater head-neck rotational velocities during heading maneuvers.2  While more research related to head impacts are clearly needed in sex-comparable sports, females experiencing greater head-neck accelerations (at similar impact rates) may provide a rationale for greater risk for SRC during sport.

As I alluded to in a previous tweet (, neck strengthening is one of the most cost-efficient ways we can reduce SRC risk, particularly in our younger athletes. A recent study by Collins et al. (2014) found thatevery one-pound increase in baseline neck strength was associated with a five percent decrease in SRC risk.3  

Given that female athletes tend to have weaker necks, it stands to reason that specific targeting of this musculature will be extremely beneficial to reduce the risk of SRC.  While the topic of specific neck strengthening for SRC is outside the scope of this particular blog, I would highly recommend taking a deeper look into neck strengthening strategies for your female athletes.

Stay tuned for Part 2 in this SRC series! I’ll discuss neuropsychological and neurophysiological differences between the sexes and how these relate to SRC injury risk and recovery.

– Jason

Twitter – @JasonAvedesian

Email –


1.         Baker JG, Leddy JJ, Darling SR, Shucard J, Makdissi M, Willer BS. Gender Differences in Recovery From Sports-Related Concussion in Adolescents. Clin Pediatr. 2016;55(8):771-775. doi:10.1177/0009922815606417

2.         Bretzin AC, Mansell JL, Tierney RT, McDevitt JK. Sex Differences in Anthropometrics and Heading Kinematics Among Division I Soccer Athletes: A Pilot Study. Sports Health. 2017;9(2):6.

3.         Collins CL, Fletcher EN, Fields SK, et al. Neck strength: a protective factor reducing risk for concussion in high school sports. J Prim Prev. 2014;35(5):309-319. doi:10.1007/s10935-014-0355-2

4.         Covassin, Harris W, Parker T, Kontos A. The Role of Age and Sex in Symptoms, Neurocognitive Performance, and Postural Stability in Athletes After Concussion. Am J Sports Med. 2012;40(6):1303-1312. doi:10.1177/0363546512444554

5.         Kerr ZY, Chandran A, Nedimyer AK, Arakkal A, Pierpoint LA, Zuckerman SL. Concussion Incidence and Trends in 20 High School Sports. Pediatrics. 2019;144(5):e20192180. doi:10.1542/peds.2019-2180

6.         O’Connor KL, Baker MM, Dalton SL, Dompier TP, Broglio SP, Kerr ZY. Epidemiology of Sport-Related Concussions in High School Athletes: National Athletic Treatment, Injury and Outcomes Network (NATION), 2011-2012 Through 2013-2014. J Athl Train. 2017;52(3):175-185. doi:10.4085/1062-6050-52.1.15

7.         Register-Mihalik JK, Guskiewicz KM, McLeod TCV, Linnan LA, Mueller FO, Marshall SW. Knowledge, Attitude, and Concussion-Reporting Behaviors Among High School Athletes: A Preliminary Study. J Athl Train. 2013;48(5):645-653. doi:10.4085/1062-6050-48.3.20

8.         Reynolds BB, Patrie J, Henry EJ, et al. Effects of Sex and Event Type on Head Impact in Collegiate Soccer. Orthopaedic Journal of Sports Medicine. 2017;5(4):232596711770170. doi:10.1177/2325967117701708

9.         Tierney RT, Higgins M, Caswell SV, et al. Sex Differences in Head Acceleration During Heading While Wearing Soccer Headgear. J Athl Train. 2008;43(6):578-584.

10.       Tierney RT, Sitler MR, Swanik CB, Swanik KA, Higgins M, Torg J. Gender differences in head-neck segment dynamic stabilization during head acceleration. Med Sci Sports Exerc. 2005;37(2):272-279. doi:10.1249/01.mss.0000152734.47516.aa

11.       Wallace J, Covassin T, Beidler E. Sex Differences in High School Athletes’ Knowledge of Sport-Related Concussion Symptoms and Reporting Behaviors. Journal of Athletic Training. 2017;52(7):682-688. doi:10.4085/1062-6050-52.3.06

12.       Wallace J, Covassin T, Nogle S, Gould D, Kovan J. Knowledge of Concussion and Reporting Behaviors in High School Athletes With or Without Access to an Athletic Trainer. J Athl Train. 2017;52(3):228-235. doi:10.4085/1062-6050-52.1.07

13.       Zuckerman SL, Kerr ZY, Yengo-Kahn A, Wasserman E, Covassin T, Solomon GS. Epidemiology of Sports-Related Concussion in NCAA Athletes From 2009-2010 to 2013-2014: Incidence, Recurrence, and Mechanisms. Am J Sports Med. 2015;43(11):2654-2662. doi:10.1177/0363546515599634