Beyond the Sets and Reps: An Introduction.

Therein lies a correlation between the brain and body that is a direct result of an interdisciplinary approach to understanding sports science. Beyond the programming is an interaction of disciplines closely examining the chaotic nature of our being. With The Rebel Movement blog, our mission is to investigate and further the science and philosophy of motor performance. Through our collaborative approach of skill acquisition and movement analysis, we will provide thought-provoking content applicable to athletes, coaches, researchers, and practitioners.  Your feedback is vital to the blog’s mission, so please feel free to provide your thoughts, comments, and considerations. We look forward to building a stronger foundation for the sports science community.

– Harjiv and Jason


Differences amongst landing types and implications for injury

Not all landings are created equal! What I mean by this statement is the following: during sport, athletes perform a variety of landing maneuvers that may have significant implications for injury risk. Landing is a fundamental movement pattern that every land-based athlete will be exposed to at some point in sport (and yes, walking and running are simply repetitive landings!). In response to environmental demands, an athlete may be required to perform a bilateral (double-limb) or unilateral (single-limb) landing maneuver, often in the close proximity of teammates and / or opponents. After completing the landing phase, an athlete typically performs sequential movements based on the situation presented (e.g., completing an additional jump for a rebound or a cutting maneuver to avoid a defender). In this post, I will discuss the phases of a landing maneuver, the biomechanical differences between bilateral and unilateral landings, as well as the influence of both preparatory and sequential movements on landing patterns. From the information presented, we can understand the external loads placed on an athlete as a function of task demand. This will allow us better understand injury risk during landing, as well as appropriate training methods to mitigate this risk.